
Signals, systems, 
acoustics and the ear

Week 3 

Frequency characterisations 
of systems & signals



The big idea
As long as we know what the system does to sinusoids...

... we can predict any output to any input.
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Representing signals as 
sums of sinusoids:

Spectra 



Synthesising waves

French mathematician
Jean Baptiste Joseph Fourier
1768-1830
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this leads to a 
complex 
waveform 
consisting of a 
200 and a 400 
Hz sinusoid

we add up 
sinewaves by adding 

up the  respective 
amplitude values of 

all sine waves for 
each point in time
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Beats: Add 2 sinewaves that are 
close in frequency

500 Hz 501 Hz
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500, 501 Hz 500+501 Hz
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Fourier Analysis
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Suppose we are 
given a complex 

waveform:

The question is, 
which are the 

underlying sine 
waves?  

Fourier series 
analysis 

(calculus based)



Fourier Analysis
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What if the 
complex wave is 
really complex?  
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Fourier Analysis 
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plotted as a 
spectrum
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How to determine a spectrum

• Easy to see how to synthesise

– spectrum  waveform

• But how do we analyse?

– waveform  spectrum

• A special case: periodic complex waves

– All component sine waves must be 
harmonically related

– Their frequencies must be integer (whole-
number) multiples of the repetition frequency 
of the complex waveform
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Adding more than two sinusoids:
component sine waves
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Adding Waveforms
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resulting periodic
complex wave

Adding a third sinusoid
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The resulting 
waveform 

becomes more 
and more like a  

sawtooth 

with 15 sinusoids:

Adding 15 sinusoids
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Spectrum of the sawtooth
waveform
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Visual effects of 'phase'
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Phase can have a great effect on the resulting 
complex waveform, e.g.: 

200, 400, and 600 Hz sinusoids added:

all in the same (sine) phase 400 Hz sinusoid is + 90°
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Other periodic complex waves

• Infinite number of possible periodic 
complex wave shapes.

• All complex periodic waves have 
spectra whose sine-wave 
components are harmonically-related

– frequencies are whole-number (integer) 
multiples of a common “fundamental” 
frequency. 
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Vowel 
with fixed 
f0
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What does the spectrum 
of a sinusoid look like?
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Spectrum of a pulse train

the original

the approximation



Spectra of periodic waves

• Only the possible frequencies are 
constrained. The amplitude and phase of 
each harmonic can have any possible 
value
– including zero amplitude. 

• Fundamental frequency (f0) is the 
greatest common factor of harmonic 
frequencies.

• Series of harmonics at:
– 100, 200, 300 Hz: f0 = 100Hz

– 150, 200, 250 Hz: f0 = 50Hz

– 200, 700, 1000 Hz: f0 = 100Hz
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Spectra of aperiodic waves

• Aperiodic waves can also be constructed from 
a series of sinusoids …

– but not using harmonics only.

• Spectra are continuous – every possible 
frequency is present…
– as if harmonics were infinitely close together.

• What is the spectrum of a single pulse?
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Keep lowering the fundamental 
frequency of a train of pulses
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Spectra of random aperiodic sounds

white noise

pink noise

Q: Why ‘white’ and ‘pink’? 26



Q: Why ‘white’ and ‘pink’?
A: analogies to light waves

frequency (Hz)

4 x 1014 7.5 x 1014

400 THz                                  750 THz 

kilo- k 103

mega- M 106

giga- G 109

tera- T 1012

peta- P 1015
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Key Points

• Fourier synthesis
– any waveform can be constructed by adding together a 

unique series of sine-waves, each specified by 
frequency, amplitude and phase …

– but an infinite number may be needed.

• Fourier analysis
– Any waveform can be decomposed into a unique set of 

component sinusoids
– involves complex mathematics but this is easily carried 

out by computers and digital signal processors. 

• Periodic waves have spectra that can only consist 
of components at harmonic frequencies of the 
fundamental.

• Aperiodic waves can have anything else – almost 
always continuous spectra.
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The BIG idea: Illustrated
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Representing systems in 
terms of what they do to  

sinusoids:
Frequency responses
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transfer function 
or 

frequency 
response
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Amplitude Response: Key points

• Change made by system to amplitude of a 
sinewave – specified over a range of frequencies.

• Response =  output amplitude/input amplitude
• Usually scaled in dB as:

20 x log(output amplitude/input amplitude)
= response (dB re input amplitude) 
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Filters

• Common name for systems that 
change amplitude and/or phase of 
waves

–or just any LTI system

• Simple filters – low-pass and high-
pass
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An ideal low-pass filter

•Sudden change from gain of 1 to a very small 
value (virtually no output at all) at cut-off 
frequency fc

•pass
-band
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A realistic low-pass filter

• Defined as frequency where gain is -3dB. 

• –3 dB is equivalent to half-power not half-amplitude

10 log(0.5) = -3.0
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Lowpass filters can vary in the 
steepness of their slopes



Slope of filter

• Often constant in dB for a given frequency 
ratio 

– e.g., –6 dB per octave (doubling of frequency)

• suggests the use of a log frequency scale 
as well as a log amplitude ratio scale

• dB in log base 10 (10, 100, 1000, etc.)

• octave scale is log base 2, as implied in the 
frequency scale of an audiogram (125, 250, 500, 
1000, 2000, etc).
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Filter slope – in dB/octave

• Degrees of steepness of slope less than18 
dB/octave can be called “shallow” 

• 48 dB/octave or more can be called “steep”
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High-pass filters
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Simple filters: Key points

• High-pass or low-pass characteristics

• Defined by

–cut-off frequency and slope of response

• Almost all natural sounds a mixture 
of frequencies

•slope
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Systems in cascade

• Each stage acts independently, on 
the output of the previous stage
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Systems in cascade

• On a linear response scale:
– Overall amplitude response is product of 

component responses (e.g., multiply the 
amplitude responses)

• On a dB (logarithmic) response scale
– Overall amplitude response is the sum of the 

component responses (i.e., sum the amplitude 
responses) …

– Because taking logarithms turns multiplication 
into addition
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Describing the width of a 
band-pass filter

•Here bandwidth (BW) is 150 Hz 44



Natural filters

• Pendulum 

• A relevant acoustic example:

– a cylinder or tube closed at one end 
and open at the other

–e.g. the ear canal
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The ear canal
An acoustic tube closed at one end and open at the 

other (≈23 mm long)
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Resonance

• Tubes like the ear canal form a special type of simple filter …
– a resonator – similar to a band-pass filter

• Response not defined by independent high-pass and low-pass 
cutoff frequencies, but from a single centre frequency (the 
resonant frequency)
– Resonant frequency is determined by physical characteristics of the 

system, often to do with size.
– Bandwidth measured at 3 dB down points …
– determined by the damping in the system
– more damping=broader bandwidth 47



What is damping?

• The loss of energy in a vibrating system, 
typically due to frictional forces

• A child on a swing: feet up or brushing the 
floor

• A pendulum with or without a cone over the 
bob.

• An acoustic resonator (like the ear canal) with 
or without gauze over its opening

• But all systems have some damping, even if 
just from molecules moving against one 
another


